七年级上册数学知识点总结(精选30篇)
七年级上册数学知识点总结 篇1
单项式
1.单项式的定义:数或字母的乘积叫做单项式,单独做一个数或字母也是单项式。
2.系数:单项式中的数字因数
3.次数:单项式中所有的字母的指数和
多项式
1.几个单项式的和叫做多项式。
2.每个单项式叫做多项式的项。
3.不含字母的项叫做常数项。
4.多项式里次数项的次数,叫做这个多项式的次数。多项式里次数的那一项叫做多项式的次
项。
整式
1.单项式和多项式统称为整式。
整式的加减
1.所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项。
2.把多项式中的同类项合并成一项,叫做合并同类项。
3.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。
合并同类项——去括号
1.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
七年级上册数学知识点总结 篇2
数轴
⒈数轴的概念
规定了原点,正方向,单位长度的直线叫做数轴。
注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不
可;⑶同一数轴上的单位长度要统一;⑷数轴的`三要素都是根据实际需要规定的。
2.数轴上的点与有理数的关系
⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。(如,数轴上的点π不是有理数)
3.利用数轴表示两数大小
⑴在数轴上数的大小比较,右边的数总比左边的数大;
⑵正数都大于0,负数都小于0,正数大于负数;
⑶两个负数比较,距离原点远的数比距离原点近的数小。
4.数轴上特殊的(小)数
⑴最小的自然数是0,无的自然数;
⑵最小的正整数是1,无的正整数;
⑶的负整数是-1,无最小的负整数
5.a可以表示什么数
⑴a>0表示a是正数;反之,a是正数,则a>0;
⑵a、0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2 (本式中2为平方)
初中生如何能轻松学好数学有哪些技巧和方法
初中生学习数学要会独立思考
初一初二是数学开窍的阶段,在解题上初中生一定要学会自己独立去思考。你需要做的就是不断的做题来培养自己的这一能力。而在积累到一定的数量之后,你的这种独立解题的能力是别人无法超越的。这个培养过程很简单也很短,只要你得到一点的成就感对于初中数学你就会充满自信。
其实,学好初中数学关键在于自己的真实能力,而不是形式。很多的初中生数学笔记一大堆,最后考试的成绩也就是那样。在学习上初中数学也好,其他科目也罢,不要讲究形式感,关键是要把一个个的问题和知识学透。不反对记笔记,但是不要一味的做笔记,听初中数学课是需要过脑子的。
学好初中数学要较真
数学是一门严谨的学科,对于自己不会的地区和知识点初中生绝对不能模棱两可的就过去了,而是要把它弄清楚做明白。有的同学在初中数学的学习中不会只是因为不熟而已,那么怎么办?就是多练习和多思考,数学的学习没有什么捷径和技巧,熟能生巧才是最好的学习技巧。另外,初中数学想要打高分,在做题方面一定要仔细和认真,不能马虎。
数学数据的平均数中位数与众数知识点
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
七年级上册数学知识点总结 篇3
七年级人教版上册数学复习资料第一章有理数1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;(2)有理数的分类:①②
(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;
a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的和为0a+b=0a、b互为相反数.4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;
(4)|a|是重要的非负数,即|a|≥0;注意:|a||b|=|ab|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n.14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的'最重要的原则.
19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.
第二章整式的加减
1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.
2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.
3.多项式:几个单项式的和叫多项式.
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.
5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.
6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.7.合并同类项法则:系数相加,字母与字母的指数不变.
8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.
9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.
10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列.
第三章一元一次方程
1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!2.等式的性质:
等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;
等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.3.方程:含未知数的等式,叫方程.
4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!
5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.
6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.
7.一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0).8.一元一次方程的最简形式:ax=b(x是未知数,a、b是已知数,且a≠0).9.一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1……(检验方程的解).10.列一元一次方程解应用题:
(1)读题分析法:…………多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:…………多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.11.列方程解应用题的常用公式:(1)行程问题:距离=速度时间;(2)工程问题:工作量=工效工时;(3)比率问题:部分=全体比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;
(5)商品价格问题:售价=定价折,利润=售价-成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,S正方形=a2,S环形=π(R2-r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥=πR2h.
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。
③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。
④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。12、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”13、角的性质
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。(2)角的大小可以度量,可以比较(3)角可以参与运算。14、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。15、平行线:
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“‖”表示,如“AB‖CD”,读作“AB平行于CD”。注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。16、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)在同一平面内,垂直于同一条直线的两直线平行。(3)平行线的定义。17、垂直:
两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。18、垂线的性质:
性质1:平面内,过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。
19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。
20、同一平面内,两条直线的位置关系:相交或平行。
七年级上册数学知识点总结 篇4
初一上学期数学知识点
整式
1.整式:单项式和多项式的统称叫整式。
2.单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。
3.系数;一个单项式中,数字因数叫做这个单项式的系数。
4.次数:一个单项式中,所有字母的指数和叫做这个单项式的次数。
5.多项式:几个单项式的和叫做多项式。
6.项:组成多项式的每个单项式叫做多项式的项。
7.常数项:不含字母的项叫做常数项。
8.多项式的次数:多项式中,次数的项的次数叫做这个多项式的次数。
9.同类项:多项式中,所含字母相同,并且相同字母的.指数也相同的项叫做同类项。
10.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
(二)整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。
1.去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变
初一数学上册代数初步知识
1.代数式:用运算符号"+-×÷……"连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)
2.列代数式的几个注意事项:
(1)数与字母相乘,或字母与字母相乘通常使用"·"乘,或省略不写;
(2)数与数相乘,仍应使用"×"乘,不用"·"乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a.
3.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:a2-b2;a与b差的平方是:(a-b)2;
(2)若a、b、c是正整数,则两位整数是:10a+b,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2.
数学七年级倒数重点知识点
乘积为1的两个数互为倒数;
注意:0没有倒数;若ab=1?a、b互为倒数;若ab=-1?a、b互为负倒数.
等于本身的数汇总:
相反数等于本身的数:0
倒数等于本身的数:1,-1
绝对值等于本身的数:正数和0
平方等于本身的数:0,1
立方等于本身的数:0,1,-1.
七年级上册数学知识点总结 篇5
第四章:几何图形初步
一几何图形
几何学:数学中以空间形式为研究对象的分支叫做几何学。
从实物中抽象出的各种图形统称为几何图形。几何图形可分为立体图形和平面图形;各个部分不都在同一平面内的几何图形叫做立体图形,各个部分都在同一平面内的几何图形叫做平面图形。
1、几何图形的投影问题
每一种几何体从不同的方向去看它,可以得到不同的简单平面几何图形。实际上投影所得到的简单平面几何图形是被投影几何体可遮挡视线的部分在平面内所留下的影子。
2、立体图形的展开问题
将立体图形的表面适当剪开,
一、点、线、面、体
1、点、线、面、体的概念点动成线,线动成面,面动成体由平面和曲成围成一个几何体
2、点、线、面和体之间的关系(1)点动成线、线动成面、面动成体;
(2)体是由面组成、面与面相交成线、线与线相交成点;
二、线段、射线、直线
1、线段、射线、直线的定义
(1)线段:线段可以近似地看成是一条有两个端点的崩直了的线。线段可以量出长度。
(2)射线:将线段向一个方向无限延伸就形成了射线,射线有一个端点。射线无法量出长度。
(3)直线:将线段向两个方向无限延伸就形成了直线,直线没有端点。直线无法量出长度。
概念剖析:
①线段有两个端点,射线有一个端点,直线没有端点;
②“线段可以量出长度”,即线段有明确的长度,“射线和直线都无法量出其长度”,即射线和直线既没有明确的长度,
也没有射线与射线、直线与直线、射线与直线之间的长短比较之说;
③线段只有长短之分,而没有大小之别,射线和直线既没有长短之分,也没有大小之别;
例1、下列说法正确的是
A、5㎝长的直线比3㎝长的直线要长2㎝;B、线段向两个方向无限延伸就形成了直线;
C、直线和射线都是不可度量的,所以它们都无法表示;D、直线AB、射线AB和线段AB表示的都是同一几何图形;
2、线段、射线、直线的表示方法
(1)线段的表示方法有两种:一是用两个端点来表示,二是用一个小写的英文字母来表示。(2)射线的`表示方法只有一种:用端点和射线上的另一个点来表示,端点要写在前面。
(3)直线的表示方法有两种:一是用直线上的两个点来表示,二是用一个小写的英文字母来表示。
概念剖析:
①将线段的两个端点位置颠倒,得到的新线段与原来的线段是同一线段,即线段AB与线段BA是同一线段;
②将表示射线的两个点位置颠倒,得到的新射线与原来的射线不是同一射线,即射线AB与射线BA不是同一射线,因为它们的端点和方向不同;
③将表示直线的两个点位置颠倒,得到的新直线与原来的直线是同一直线,即直线AB与直线BA是同一直线;④识别图中线段的条数要把握一点:只要有一个端点不相同,就是不同的线段;⑤识别图中射线的条数要把握两点:端点和方向缺一不可;
七年级上册数学知识点总结 篇6
第一章丰富的图形世界
1、几何图形
从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体
(1)几何图形的组成
点:线和线相交的地方是点,它是几何图形中最基本的图形。线:面和面相交的地方是线,分为直线和曲线。面:包围着体的是面,分为平面和曲面。体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、生活中的立体图形圆柱柱
生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、(按名称分)锥圆锥棱锥
4、棱柱及其有关概念:
棱:在棱柱中,任何相邻两个面的交线,都叫做棱。侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。
5、正方体的平面展开图:11种
6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形。
7、三视图
物体的三视图指主视图、俯视图、左视图。主视图:从正面看到的图,叫做主视图。左视图:从左面看到的图,叫做左视图
俯视图:从上面看到的图,叫做俯视图。
8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形。
弧:圆上A、B两点之间的部分叫做弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
第二章有理数及其运算
1、有理数的分类正有理数
有理数零有限小数和无限循环小数负有理数或整数有理数分数
2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零
3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。任何一个有理数都可以用数轴上的一个点来表示。解题时要真正掌握数形结合的思想,并能灵活运用。
4、倒数:如果a与b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。
5、绝对值:在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。(|a|≥0)。零的绝对值时它本身,也可看成它的相反数,若|a|=a,则a≥0;若|a|=-a,则a≤0。
6、有理数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。
7、有理数的运算:
(1)五种运算:加、减、乘、除、乘方
(2)有理数的运算顺序
先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。
(3)运算律加法交换律abba加法结合律)(cbacba乘法交换律baab乘法结合律)(bcacab乘法对加法的分配律acabcba)
第三章字母表示数1、代数式
用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。
2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。
3、合并同类项法则:把同类项的系数相加,字母和字母的指数不变。
4、去括号法则
(1)括号前是“+”,把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
(2)括号前是,把括号和它前面的号去掉后,原括号里各项的符号都要改变。
5、整式的运算:整式的加减法:
(1)去括号;
(2)合并同类项。
第四章平面图形及其位置关系
1、线段:绷紧的琴弦,人行横道线都可以近似的看做线段。线段有两个端点。
2、射线:将线段向一个方向无限延长就形成了射线。射线有一个端点。
3、直线:将线段向两个方向无限延长就形成了直线。直线没有端点。
4、点、直线、射线和线段的表示
在几何里,我们常用字母表示图形。一个点可以用一个大写字母表示。一条直线可以用一个小写字母表示或用直线上两个点的大写字母表示。
一条射线可以用一个小写字母表示或用端点和射线上另一点来表示(端点字母写在前面)。一条线段可以用一个小写字母表示或用它的端点的两个大写字母来表示。
5、点和直线的位置关系有两种:
①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
6、直线的性质
(1)直线公理:经过两个点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
7、线段的性质
(1)线段公理:两点之间的所有连线中,线段最短。
(2)两点之间的距离:两点之间线段的长度,叫做这两点之间的距离。
(3)线段的中点到两端点的距离相等。
(4)线段的大小关系和它们的长度的大小关系是一致的。
8、线段的中点:
点M把线段AB分成相等的两条相等的线段AM与BM,点M叫做线段AB的中点。
9、角:
有公共端点的两条射线组成的图形叫做角,两条射线的公共端点叫做这个角的顶点,这两条射线叫做这个角的边。或:角也可以看成是一条射线绕着它的端点旋转而成的。
10、平角和周角:一条射线绕着它的端点旋转,当终边和始边成一条直线时,所形成的角叫做平角。终边继续旋转,当它又和始边重合时,所形成的角叫做周角。
11、角的表示
角的表示方法有以下四种:
①用数字表示单独的角,如∠1,∠2,∠3等。
②用小写的希腊字母表示单独的一个角,如∠α,∠β,∠γ,∠θ等。③用一个大写英文字母表示一个独立(在一个顶点处只有一个角)的角,如∠B,∠C等。④用三个大写英文字母表示任一个角,如∠BAD,∠BAE,∠CAE等。
注意:用三个大写英文字母表示角时,一定要把顶点字母写在中间,边上的字母写在两侧。
12、角的度量
角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“°”表示,1度记作“1°”,n度记作“n°”。
把1°的角60等分,每一份叫做1分的角,1分记作“1’”。把1’的角60等分,每一份叫做1秒的角,1秒记作“1””。1°=60’,1’=60”13、角的性质
(1)角的大小与边的长短无关,只与构成角的.两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
14、角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
15、平行线:
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥”表示,如“AB∥CD”,读作“AB平行于CD”。注意:
(1)平行线是无限延伸的,无论怎样延伸也不相交。
(2)当遇到线段、射线平行时,指的是线段、射线所在的直线平行。
16、平行线公理及其推论
平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。补充平行线的判定方法:
(1)平行于同一条直线的两直线平行。
(2)在同一平面内,垂直于同一条直线的两直线平行。
(3)平行线的定义。
17、垂直:两条直线相交成直角,就说这两条直线互相垂直。其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
直线AB,CD互相垂直,记作“AB⊥CD”(或“CD⊥AB”),读作“AB垂直于CD”(或“CD垂直于AB”)。
18、垂线的性质:
性质1:平面内,过一点有且只有一条直线与已知直线垂直。
性质2:直线外一点与直线上各点连接的所有线段中,垂线段最短。简称:垂线段最短。
19、点到直线的距离:过A点作l的垂线,垂足为B点,线段AB的长度叫做点A到直线l的距离。
20、同一平面内,两条直线的位置关系:相交或平行。
.第五章一元一次方程
1、方程含有未知数的等式叫做方程。
2、方程的解
能使方程左右两边相等的未知数的值叫做方程的解。
3、等式的性质
(1)等式的两边同时加上(或减去)同一个代数式,所得结果仍是等式。
(2)等式的两边同时乘以同一个数((或除以同一个不为0的数),所得结果仍是等式。
4、一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程。
5、解一元一次方程的一般步骤:
(1)去分母
(2)去括号
(3)移项(把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫移项。)
(4)合并同类项
(5)将未知数的系数化为1
第六章生活中的数据
1、科学记数法
一般地,一个大于10的数可以表示成na10的形式,其中101a,n是正整数,这种记数方法叫做科学记数法。
2、扇形统计图及其画法:
扇形统计图:利用圆与扇形来表示总体与部分的关系,即圆代表总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。画法:
(1)计算不同部分占总体的百分比(在扇形中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比)。
(2)计算各个扇形的圆心角(顶点在圆心的角叫做圆心角)的度数。
(3)在圆中画出各个扇形,并标上百分比。
3、各种统计图的优缺点
条形统计图:能清楚地表示出每个项目的具体数目。折线统计图:能清楚地反映事物的变化情况。
扇形统计图:能清楚地表示出各部分在总体中所占的百分比。
第七章可能性
1、确定事件和不确定事件
(1)、确定事件
必然事件:生活中,有些事情我们事先能肯定它一定会发生,这些事情称为必然事件。不可能事件:有些事情我们事先能肯定它一定不会发生,这些事情称为不可能事件。
(2)、不确定事件:
有些事情我们事先无法肯定它会不会发生,这些事情称为不确定事件
(3)、必然事件确定事件
事件不可能事件不确定事件
2、不确定事件发生的可能性
一般地,不确定事件发生的可能性是有大小的。必然事件发生的可能性是1不可能事件发生的可能性是
七年级上册数学知识点总结 篇7
1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件分子为零且分母不为零
2、分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
3、分式的通分和约分:关键先是分解因式
4、分式的运算:
分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。分式乘方法则:分式乘方要把分子、分母分别乘方。
分式的加减法则:同分母的分式相加减,分母不变,把分子相加减。异分母的分式相加减,先通分,变为同分母分式,然后再加减
混合运算:运算顺序和以前一样。能用运算率简算的可用运算率简算。
5、任何一个不等于零的数的零次幂等于1,即;当n为正整数时
6、正整数指数幂运算性质也可以推广到整数指数幂、(m,n是整数)
(1)同底数的幂的乘法:;
(2)幂的乘方:;
(3)积的乘方:;
(4)同底数的幂的除法:(a≠0);
(5)商的乘方:;(b≠0)
7、分式方程:含分式,并且分母中含未知数的方程——分式方程。
解分式方程的过程,实质上是将方程两边同乘以一个整式(最简公分母),把分式方程转化为整式方程。
解分式方程时,方程两边同乘以最简公分母时,最简公分母有可能为0,这样就产生了增根,因此分式方程一定要验根。
解分式方程的步骤:
(1)能化简的先化简
(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;
(4)验根、
增根应满足两个条件:一是其值应使最简公分母为0,二是其值应是去分母后所的整式方程的根。
分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
列方程应用题的步骤是什么?(1)审;(2)设;(3)列;(4)解;(5)答、
应用题有几种类型;基本公式是什么?基本上有五种:
(1)行程问题:基本公式:路程=速度×时间而行程问题中又分相遇问题、追及问题、
(2)数字问题在数字问题中要掌握十进制数的表示法、
(3)工程问题基本公式:工作量=工时×工效、(4)顺水逆水问题v顺水=v静水+v水、 v逆水=v静水—v水、
8、科学记数法:把一个数表示成的形式(其中,n是整数)的记数方法叫做科学记数法、
用科学记数法表示绝对值大于10的n位整数时,其中10的指数是
用科学记数法表示绝对值小于1的正小数时,其中10的指数是第一个非0数字前面0的个数(包括小数点前面的一个0)
七年级上册数学知识点总结 篇8
知识要点 1。分式的有关概念
设A、B表示两个整式。如果B中含有字母,式子 就叫做分式。注意分母B的值不能为零,否则分式没有意义
分子与分母没有公因式的分式叫做最简分式。如果分子分母有公因式,要进行约分化简
2、分式的基本性质
(M为不等于零的整式)
3。分式的运算 (分式的运算法则与分数的运算法则类似)。
(异分母相加,先通分);
4。零指数
5。负整数指数
注意正整数幂的运算性质
可以推广到整数指数幂,也就是上述等式中的m、 n可以是O或负整数。
6、解分式方程的一般步骤:在方程的两边都乘以最简公分母,约去分母,化为整式方程。解这个整式方程。验根,即把整式方程的根代入最简公分母,看结果是不是零,若结果不是0,说明此根是原方程的根;若结果是0,说明此根是原方程的增根,必须舍去。
7、列分式方程解应用题的一般步骤:
(1)审清题意;
(2)设未知数(要有单位);
(3)根据题目中的数量关系列出式子,找出相等关系,列出方程;
(4)解方程,并验根,还要看方程的解是否符合题意;
(5)写出答案(要有单位)。
正比例、反比例、一次函数
第一象限(+,+),第二象限(—,+)第三象限(—、—)第四象限(+,—);
x轴上的点的纵坐标等于0,反过来,纵坐标等于0的点都在x轴上,y轴上的点的横坐标等于0,反过来,横坐标等于0的点都在y轴上,
若点在第一、三象限角平分线上,它的横坐标等于纵坐标,若点在第二,四象限角平分线上,它的横坐标与纵坐标互为相反数;
若两个点关于x轴对称,横坐标相等,纵坐标互为相反数;若两个点关于y轴对称,纵坐标相等,横坐标互为相反数;若两个点关于原点对称,横坐标、纵坐标都是互为相反数。
1、 一次函数,正比例函数的定义
(1)如果y=kx+b(k,b为常数,且k≠0),那么y叫做x的一次函数。
(2)当b=0时,一次函数y=kx+b即为y=kx(k≠0)。这时,y叫做x的正比例函数。
注:正比例函数是特殊的一次函数,一次函数包含正比例函数。
2、正比例函数的图象与性质
(1)正比例函数y=kx(k≠0)的图象是过(0,0)(1,k)的一条直线。
(2)当k>0时 y随x的增大而增大 直线y=kx经过一、三象限 从左到右直线上升。
当k0时 y随x的增大而增大 直线y=kx+b(k≠0)是上升的
当k0,b>0 直线经过一、二、三象限
(2)k>0,b
七年级上册数学知识点总结 篇9
一元一次方程
1.方程是含有未知数的等式。
2.方程是等式,等式不一定是方程。
3.只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。
列方程
1.分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。
2.列方程是解决问题的重要方法,利用方程可以解出未知数。
解方程
1.解方程就是求出式方程中等号两边相等的未知数的值,这个值就是方程的解。
等式的性质
1.等式的性质1等式两边同时加(减)同一个数(或式子),结果仍相等。
2.等式的性质2等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
合并同类项
1.把多项式中同类项合成一项,叫做合并同类项。
移项
把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一
边移到另一边,这样的变形叫做移项。
去括号
1.括号前面有"+"号,把括号和它前面的"+"号去掉,括号里各项的符号不改变
2.括号前面是"-"号,把括号和它前面的"-"号去掉,括号里各项的符号都要改变成相反的符号。
七年级上册数学知识点总结 篇10
初一数学三角函数知识点
1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方a2+b2=c2。
2、如下图,在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B):
3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)
6、正弦、余弦的增减性:
当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。
7、正切、余切的增减性:当0°<α<90°时,tanα随α的增大而增大,cotα随α的增大而减小。
初一数学知识点总结
1.有理数:
(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;
(2)有理数的分类: ① ②
2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.
3.相反数:
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;
(2)相反数的和为0 ? a+b=0 ? a、b互为相反数.
4.绝对值:
(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;
(2)绝对值可表示为:或;绝对值的问题经常分类讨论;
5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数> 0,小数-大数< 0.
6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;若ab=1? a、b互为倒数;若ab=-1?a、b互为负倒数.
7.有理数加法法则:
(1)同号两数相加,取相同的符号,并把绝对值相加;
(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;
(3)一个数与0相加,仍得这个数.
8.有理数加法的运算律:
(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).
9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).
10有理数乘法法则:
(1)两数相乘,同号为正,异号为负,并把绝对值相乘;
(2)任何数同零相乘都得零;
(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.
11有理数乘法的运算律:
(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);
(3)乘法的分配律:a(b+c)=ab+ac .
12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.
13.有理数乘方的法则:
(1)正数的任何次幂都是正数;
(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n ,当n为正偶数时:(-a)n =an或(a-b)n=(b-a)n .
14.乘方的定义:
(1)求相同因式积的运算,叫做乘方;
(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;
15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.
16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.
17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.
18.混合运算法则:先乘方,后乘除,最后加减.
七年级上册数学知识点总结 篇11
第1章有理数及其运算
复习目标:
1.能灵活运用数轴上的点来表示有理数,理解相反数、绝对值,并能用数轴比较有理数的大小。
2.能熟练运用有理数的运算法则进行有理数的加、减、乘、除、乘方计算,并能用运算律简化计算。
3.学会用科学记数法来表示较大的数,会根据精确度取近似数,能判断一个近似数是精确到哪一位。
4.能运用有理数及其运算解决实际问题。
基础知识:
1.大于0的数叫做正数,在正数的前面加上一个“-”号就变成负数(负数小于0),0既不是正数,也不是负数。正数和负数表示的意义相反:例如上升/下降,增加/减少,收入/支出,盈利/亏损,零上/零下,东/西,顺时针/逆时针
2.整数和分数统称为有理数。整数又分为正整数,0,负整数;分数分为正分数和负分数。
3.规定了原点、正方向、单位长度的直线叫做数轴。任何一个有理数都能在数轴上找到唯一的点来表示(注意:并不是数轴上的每一个点都表示有理数,有一些点表示的是无理数例如π)
4.数轴上两个点表示的数,右边的数的总比左边的数大;正数都大于0,负数都小于0,正数总是大于负数。
5.只有符号不同的'两个数互为相反数。一般地,a和-a是一对互为相反数;特殊地,0的相反数是0。互为相反数的两个数绝对值相等(绝对值为a的数有两个:a和-a)。
6.在数轴上表示一个数的点与原点之间的距离叫做这个数的绝对值;正数的绝对值是它本身;负数的绝对值是它的相反数,0的绝对值是0;(绝对值是一个非负数)。两个负数比较大小,绝对值大的反而小。
7.有理数加法法则:
(1)同号两数相加,取加数的符号,并把绝对值相加;
(2)异号两数相加:绝对值相等时和为0;绝对值不等时,取绝对值较大的加数的符号,并用大绝对值减去小绝对值;
(3)任何一个数同0相加仍得这个数。
8.有理数的减法法则:减去一个数,等于加上这个数的相反数;(减法其实就是加法。)
9.加减混合运算统一看成是几个数的和的形式(省略加号和括号),根据加法的交换律和结合律进行运算。通常:
(1)互为相反数相结合
(2)符号相同相结合
(3)分母相同的相结合
(4)几个数相加得整数的相结合。
10.有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘积为0。多个数相乘看负因数的个数,偶数个则积为正,奇数个则积为负;并把所有因数的绝对值相乘。
11.两数相除,同号得正,异号得负,并把绝对值相除;0除以任何不为0的数,都得0。
12.乘积为1的两个数互为倒数,除以一个不为0的数等于乘以这个数的倒数;(除法其实就是乘法。)乘除混合运算统一化除为乘,再根据乘法法则进行运算。
13.求几个相同因数的积的运算叫做乘方(特殊的乘法运算),乘方的结果叫做幂。其中,a叫做底数,n叫做指数。正数的任何次幂都是正数;0的任何次幂都是0;负数的偶数次幂是正数,奇数次幂是负数。
14.有理数的混合运算的运算顺序是:先算乘方,再算乘除,最后算加减;如果有括号,就先算括号(先算小括号,再中括号,最后大括号)。
15.科学记数法:把大于10的数表示成a×n的形式。(其中a是整数位只有一位10的数,n是正整数;n=原数的整数位数-1)。
16.取近似数:精确到哪一位就看后一位,四舍五入。有效数字:从一个数的第一个非零数字起,到末位数字为止,所有的数字都是这个数的有效数字。(例如:1.804有四个有效数字1、8、0、4。0.0668只有三个有效数字:6、6、8。)
七年级上册数学知识点总结 篇12
一.正数和负数
⒈正数和负数的概念
负数:比0小的数正数:比0大的数0既不是正数,也不是负数。
注意:
①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)
②正数有时也可以在前面加“+”,有时“+”省略不写。所以省略“+”的正数的符号是正号。
2.具有相反意义的量
若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃
支出与收入;增加与减少;盈利与亏损;北与南;东与西;涨与跌;增长与降低等等是相对相反量,它们计数:比原先多了的数,增加增长了的数一般记为正数;相反,比原先少了的数,减少降低了的数一般记为负数。3.0表示的意义
⑴0表示“没有”,如教室里有0个人,就是说教室里没有人;
⑵0是正数和负数的分界线,0既不是正数,也不是负数。
二.有理数
1.有理数的概念
⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)
⑵正分数和负分数统称为分数
⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。①π是无限不循环小数,不能写成分数形式,不是有理数。②有限小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8?也是偶数,-1,-3,-5?也是奇数。
凡能写成q(p,q为整数且p?0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负p
分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;?不是有理数;
七年级上册数学知识点总结 篇13
难点
三角形内角和定理的推理的过程;
在具体的图形中不重复,且不遗漏地识别所有三角形;
用三角形三边不等关系判定三条线段可否组成三角形。
知识点、概念总结
1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类
3.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
4.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的`线段叫做三角形的高。
5.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
6.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
7.高线、中线、角平分线的意义和做法
8.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
9.三角形内角和定理:三角形三个内角的和等于180°
推论1直角三角形的两个锐角互余;
推论2三角形的一个外角等于和它不相邻的两个内角和;
推论3三角形的一个外角大于任何一个和它不相邻的内角;
三角形的内角和是外角和的一半。
10.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。
2分数与小数的互化
重要程度--四颗星。最早接触到分数是在三年级的课本上,学习了分数的意义、比较大小和同分母的加减法,这里的分数则是更加全面的去学习、认识分数。其中分数的基本性质里面会有分数的化简、约分,这也是接下来数学中非常常用的运算性质(类似四年级学习的乘法分配率);分数的大小比较也不再是简单的同分母或者一个个体的比较,复杂的一些还需要用到“放缩法”;分数的乘除运算法则则是数学运算的基本功了,越熟练越好(让孩子多练)。孩子在学习过程中遇到的第一个难点,那就属分数的应用题了(学生不明白什么时候用乘法什么时候用除法),往年很多学生都分不清题目中的:整体(单位“1”)、部分和占比(率),误区是学生们总认为整体比部分要大,但是学习分数以后就不一定了;
3多边形外角和定理:
(1) n边形外角和等于n·180°-(n-2)·180°=360°
(2)多边形的每个内角与它相邻的外角是邻补角,所以n边形内角和加外角和等于n·180°
4多边形对角线的条数:
(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。 (2)n边形共有n(n-3)/2条对角线。
七年级上册数学知识点总结 篇14
第一章 勾股定理
定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。
判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。 定义:满足a +b =c 的三个正整数,称为勾股数。
第二章 实数
定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示)
一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。 特别地,我们规定0的算术平方根是0。
一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。 求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。
一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。 正数的立方根是正数;0的立方根是0;负数的立方根是负数。 求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。 有理数和无理数统称为实数,即实数可以分为有理数和无理数。
每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。
在数轴上,右边的点表示的数比左边的点表示的数大。
第三章 图形的平移与旋转
定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。
经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。
在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。
任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
第四章 四边形性质探索
定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。
平行四边形: 两组对边分别平行的四边形.。 对边相等,对角相等,对角线互相平分。 两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形
菱形 :一组邻边相等的平行四边形 (平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。
矩形: 有一个内角是直角的平行四边形 (平行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。
正方形: 一组邻边相等的矩形。 正方形具有平行四边形、菱形、矩形的一切性质。 一组邻边相等的矩形是正方形,一个内角是直角的菱形是正方形。
梯形: 一组对边平行而另一组对边不平行的四边形。 一组对边平行而另一组对边不平行的四边形是梯形 。 等腰梯形 :两条腰相等的梯形。 同一底上的两个内角相等,对角线相等。 两腰相等的梯形是等腰梯形,
同一底上两个内角相等的梯形是等腰梯形 。
直角梯形 :一条腰和底垂直的梯形。 一条腰和底垂直的梯形是直角梯形。
多边形:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。n边形的内角和等于(n-2)180
多边形内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角。 多边形的外角和都等于360。三角形、四边形和六边形都可以密铺。
定义:在平面内,一个图形绕某个点旋转180,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心。
中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
第五章 位置的确定
位置表示方法:方位角加距离;坐标;经纬度
定义:在平面内,两条互相垂直且有公共原点的书轴组成平面直角坐标系。
通常,两条数轴分别至于水平位置与铅直位置,取向右与向上方向分别为两条数轴的正方向。水平的数轴叫做x轴或横轴,铅直的数轴叫做y轴或纵轴,x轴和y统称坐标轴,它们的公共原点O称为直角坐标系的原点。
图形随坐标变化:向上/下/左/右平移X个单位长度、横向/纵向拉长X倍、横向/纵向压缩X倍、放大/缩小了X倍、关于x/y轴成轴对称、关于原点O成中心对称
第六章 一次函数
定义:一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中是x自变量,y是因变量。
若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系中描出它的对应点,所有这些点组成的图形叫做该函数的图象。 正比例函数y=kx的图象是经过原点(0,0)的一条直线。 在一次函数y=kx+b中,
当k0时,的值随值的增大而增大; 当k0时,的值随值的增大而减小。
第七章 二元一次方程组
定义:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。 像这样含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。 适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解。 解二元一次方程组的基本思路是“消元”把“二元”变为“一元”。 以一个未知数代另一个未知数的解法称为代入消元法,简称代入法。 通过两式加减消去其中一个未知数的解法称做加减消元法,简称加减法。
第八章 数据的代表
定义:一般地,对于n个数X1,X2,Xn,我们把1/n(X1+X2++Xn)叫做这个数的算术平均数,简称平均数,记为X。
为A的三项测试成绩的加权平均数。
一般地,个数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数,一组数据出现次数最多的那个数据叫做这组数据的众数。
七年级上册数学知识点总结 篇15
一、整式
单项式和多项式统称整式。
a)由数与字母的积组成的代数式叫做单项式。单独一个数或字母也是单项式。
b)单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数,系数为1或-1。
c)一个单项式中,所有字母的指数和叫做这个单项式的次数(注意:常数项的单项式次数为0)
a)几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项叫做常数项。一个多项式中,次数最高项的次数,叫做这个多项式的次数.
b)单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数。多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数。多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的'次数只有一个,它是所含各项的次数中最高的那一项次数.
a)整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.
b)括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、同底数幂的乘法
(,n都是整数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:
a)法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;
b) 指数是1时,不要误以为没有指数;
c)不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;
d)当三个或三个以上同底数幂相乘时,法则可推广为(其中、n、p均为整数);
e)公式还可以逆用:(、n均为整数)
a)幂的乘方法则:(,n都是整数数)是幂的乘法法则为基础推导出来的,但两者不能混淆。
b)(,n都为整数)
c) 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3
d)底数有时形式不同,但可以化成相同。
e) 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。
f) 积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(ab)n=anbn (n为正整数)。
g) 幂的乘方与积乘方法则均可逆向运用。
三、同底数幂的除法
a)同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0).
b)在应用时需要注意以下几点:
1) 法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a0。
2)任何不等于0的数的0次幂等于1,即a0=1(a≠0) ,如100=1 ,(-2.50=1),则00无意义。
c)任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即( a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的,当a<0时,a-p的值可能是正也可能是负的,如, d)运算要注意运算顺序。
四、整式的乘法
单项式相乘,它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:
a)积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;
b)相同字母相乘,运用同底数幂的乘法法则;
c)只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;
d)单项式乘法法则对于三个以上的单项式相乘同样适用;
e)单项式乘以单项式,结果仍是一个单项式。
单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
单项式与多项式相乘时要注意以下几点:
a)单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;
b)运算时要注意积的符号,多项式的每一项都包括它前面的符号;
c) 在混合运算时,要注意运算顺序。
多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项相乘,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:
a)多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;
b)多项式相乘的结果应注意合并同类项;
c)对含有同一个字母的一次项系数是1的两个一次二项式相乘(x+a)(x+b)=x2+(a+b)x+ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(x+a)和(nx+b)相乘可以得到。
五.平方差公式
两数和与这两数差的积,等于它们的平方差,即。
其结构特征是:
a)公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;
b) 公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
六、完全平方公式
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即;
口诀:首平方,尾平方,2倍乘积在中央;
a)公式左边是二项式的完全平方;
b)公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
c)在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。
七、整式的除法
单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;
多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。
七年级上册数学知识点总结 篇16
1.充分体现由特殊到一般,由一般到特殊的思维过程,经历探索数量关系和变化规律的过程,渗透辩证唯物主义思想。
2.知识呈现过程尽量做到与学生已有生活经验密切联系,如皮球的弹跳高度,传数游戏等,发展学生应用数学的意识和能力。
3.让知识的发生、发展过程得以充分暴露,重视基本知识和基本技能的学习。
4.注意发挥例题和习题的教育功能。加强学科间的纵向联系并注意与其他学科的横向联系,扩充学生的知识面,注意适当插入一些开放题,培养发散思维,适时渗透美育和德育教育。
知识要点:
整式的有关概念
(1)单项式:表示数与字母的乘积的代数式,叫做单项式,单独的一个数或一个字母也是单项式,如、2πr、a,0……都是单项式。
(2)多项式:几个单项式的和叫做多项式。
七年级上册数学知识点总结 篇17
2.1整式
1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数。单项式指的是数或字母的积的代数式。单独一个数或一个字母也是单项式。因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式。
2、单项式的系数:是指单项式中的数字因数;
3、单项数的次数:是指单项式中所有字母的指数的和。
4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式。每个单项式称项,常数项,多项式的次数就是多项式中次数的次数。多项式的次数是指多项式里次数项的次数,这里ab是次数项,其次数是6;多项式的项是指在多项式中,每一个单项式。特别注意多项式的项包括它前面的性质符号。
5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。
6、单项式和多项式统称为整式。
2.2整式的加减
1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。
2、同类项必须同时满足两个条件:
(1)所含字母相同;
(2)相同字母的次数相同,二者缺一不可。同类项与系数大小、字母的排列顺序无关
3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。
4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;
5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。
6、整式加减的一般步骤:
一去、二找、三合
(1)如果遇到括号按去括号法则先去括号。
(2)结合同类项。
(3)合并同类项
七年级上册数学知识点总结 篇18
一、去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉。括号里各项都不变符号,括号前是“-”号,把括号和它前面的“-”号去掉。括号里各项都改变符号。
二、合并同类项:同类项的系数相加,所得的结果作为系数。字母和字母的指数不变。同类项合并的依据:乘法分配律。
三、整式运算的法则:
1.整式的加减:几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接
2.整式的乘除:单项式相乘(除),把它们的系数、相同字母分别相乘(除),对于只在一个单项式(被除式)里含有的字母,则连同它的指数作为积(商)的一个因式。相同字母相乘(除)要用到同底数幂的运算性质:多项式乘(除)以单项式,先把这个多项式的每一项乘(除)以这个单项式,再把所得的积(商)相加多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加
3.整式的乘方
单项式乘方,把系数乘方,作为结果的系数,再把乘方的次数与字母的指数分别相乘所得的幂作为结果的因式单项式的乘方要用到幂的乘方性质与积的乘方性质:
七年级上册数学知识点总结 篇19
初一学生大多数是十二、三岁的少年,处于人生长身体、长知识的阶段,他们好奇、热情、活泼、各方面都朝气蓬勃;但自制力差,注意力不集中总之,初一学生处于半幼稚、半成熟阶段,掌握其规律教学,更应善于引导,使他们旺盛的精力,强烈的好奇化为强烈的求知欲望和认真学习的精神,变被动学习为主动自觉学习。下面我谈谈这半年来我对初一数学的体会。
本学期,我适应新时期教学工作的要求,从各方面严格要求自己,积极向老教师请教,结合本校的实际条件和学生的实际情况,勤勤恳恳,兢兢业业,使教学工作有计划,有组织,有步骤地开展。
一、认真备课,不但备课而且备教材备教法,根据教材内容及学生的实际,设计课的类型,拟定采用的教学方法,并对教学过程的程序作了详细的记录,认真写好教案。每一课都做到“有备而来”,每堂课都在课前作好充分的准备,并制作各种有利于吸引学生注意力的有趣教具,课后及时对该课作出总结,写好教学后记,并认真按搜集每课书的知识要点,归纳成集。
二、增强上课技能,提高教学质量,使讲解清晰化,准确化,条理化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主观能动作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师尽量讲得少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
三、虚心请教其他老师。在教学上,有疑必问。在各个章节的学习上都积极征求其他老师的意见,学习他们的方法,同时,多听优秀老师的课,做到边听边讲,学习别人的优点,克服自己的不足,并常常邀请其他老师来听课,征求他们的意见,改进工作。
四、认真批改作业,布置作业做到精读精练。有针对性,有层次性。为了做到这点,我常常到各大书店去搜集资料,对各种辅助资料进行筛选,力求每一次练习都起到最大的效果。同时对学生的作业批改及时、认真,分析并记录学生的作业情况,将他们在作业过程出现的问题作出分类总结,进行透切的评讲,并针对有关情况及时改进教学方法,做到有的放矢。
五、做好课后辅导工作,注意分层教学。在课后,为不同层次的学生进行相应的辅导,以满足不同层次的学生的需求,避免了一刀切的弊端,同时加大了后进生的辅导力度。对后进生的辅导,并不限于学习知识性的辅导,更重要的是学习思想的辅导,要提高后进生的成绩,首先要解决他们的心结,让他们意识到学习的重要性和必要性,使之对学习萌发兴趣。要通过各种途径激发他们的求知欲和上进心,让他们意识到学习并不是一项任务,也不是一件痛苦的事情。而是充满乐趣的。从而自觉的把身心投放到学习中去。这样,后进生的转化,就由原来的简单粗暴、强制学习转化到自觉的求知上来。使学习成为他们自我意识力度一部分。在此基础上,再教给他们学习的方法,提高他们的技能。并认真细致地做好查漏补缺工作。后进生通常存在很多知识断层,这些都是后进生转化过程中的拌脚石,在做好后进生的转化工作时,要特别注意给他们补课,把他们以前学习的知识断层补充完整,这样,他们就会学得轻松,进步也快,兴趣和求知欲也会随之增加。
六、积极推进素质教育。目前的考试模式仍然比较传统,这决定了教师的教学模式要停留在应试教育的层次上,为此,我在教学工作中注意了学生能力的培养,把传受知识、技能和发展智力、能力结合起来,在知识层面上注入了思想情感教育的因素,发挥学生的创新意识和创新能力。让学生的各种素质都得到有效的发展和培养。
七、狠抓学风。我所教的班总体情况不太好,学生不重视该科,上课的时候不认真,大部分学生不能专心听讲,课后也不能认真完成作业。作业也因为怕分数低而找别人的来抄,这样就严重影响了成绩的提高。对此,我狠抓学风,在班级里提倡一种认真、求实的学风,严厉批评抄袭作业的行为。与此同时,为了提高同学的学习积极性,开展了学习竞赛活动,在学生中兴起一种你追我赶的学习风气。可是差生面太大了,后进生基础太差,考试成绩都很差,有些同学是经常不及格,我找来差生,了解原因,有些是不感兴趣,我就跟他们讲学习数学的重要性,跟他们讲一些有趣的数学故事,提高他们的兴趣;有些是没有努力去学,我提出批评以后再加以鼓励,并为他们定下学习目标,时时督促他们,帮助他们;一些学生基础太差,抱着破罐子破摔的态度,或过分自卑,考试怯场等,我就帮助他们找出适合自己的学习方法,分析原因,鼓励他们不要害怕失败,要给自己信心,并且要在平时多做多练,多问几个为什么。同时,一有进步,即使很小,我也及时地表扬他们。
八、经过一个学期的努力,一部分同学成绩有所提高。存在的不足是,学生的知识结构还不是很完整,小学的知识系统还存在很多真空的部分。因为很多社会因素的影响,很多学生厌学,倒至教学工作很难开展,学生的学习成绩很难提高。如何解决呢?这些都有待以后改进。
教学中的困惑:在教学中,我注重采用小组合作交流,共同学习,但在此过程中,好的学生能积极讨论、发言、学到了很多知识,发展了他们的能力,但对于哪些调皮学生来说,讨论简直是一种放松。什么都没有学到,学生与学生之间的两极分化日趋严重,作为教师十分头疼,如何解决呢?还有待探索和研究。
七年级上册数学知识点总结 篇20
代数式中的一种有理式:不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (分母中含有字母有除法运算的,那么式子叫做分式)
1.单项式:数或字母的积(如5n),单个的数或字母也是单项式。
(1)单项式的系数:单项式中的数字因数及性质符号叫做单项式的系数。(如果一个单项式,只含有数字因数,系数是它本身,次数是0)。
(2)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数(非零常数的次数为0)。
2.多项式
(1)概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
(3)多项式的排列:把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
在做多项式的排列的题时注意:
(1)由于单项式的项包括它前面的性质符号,因此在排列时,仍需把每一项的性质符看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:a.先确认按照哪个字母的指数来排列。
b.确定按这个字母降幂排列,还是升幂排列。
3.整式:单项式和多项式统称为整式。
4.列代数式的几个注意事项
(1)数与字母相乘,或字母与字母相乘通常使用“· ”乘,或省略不写;
(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;
(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;
(4)带分数与字母相乘时,要把带分数改成假分数形式;
(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成3/a的形式;
(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a .
整式的加减运算
1.同类项的概念:所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也是同类项。(同类项与系数无关,与字母排列的顺序也无关)。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。不能合并的项单独作为一项,不可遗漏
3.整式加减实质就是去括号,合并同类项。
注:去括号时,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。
4.几个重要的代数式:(m、n表示整数)
(1)a与b的平方差是:a2-b2 ; a与b差的平方是:(a-b)2 ;(本式中2为平方)
(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c;
(3)若m、n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1;
(4)若b>0,则正数是:a2+b,负数是:-a2-b,非负数是:a2,非正数是:-a2 (本式中2为平方)
初中生如何能轻松学好数学有哪些技巧和方法
初中生学习数学要会独立思考
初一初二是数学开窍的阶段,在解题上初中生一定要学会自己独立去思考。你需要做的就是不断的做题来培养自己的这一能力。而在积累到一定的数量之后,你的这种独立解题的能力是别人无法超越的。这个培养过程很简单也很短,只要你得到一点的成就感对于初中数学你就会充满自信。
其实,学好初中数学关键在于自己的真实能力,而不是形式。很多的初中生数学笔记一大堆,最后考试的成绩也就是那样。在学习上初中数学也好,其他科目也罢,不要讲究形式感,关键是要把一个个的问题和知识学透。不反对记笔记,但是不要一味的做笔记,听初中数学课是需要过脑子的。
学好初中数学要较真
数学是一门严谨的学科,对于自己不会的地区和知识点初中生绝对不能模棱两可的就过去了,而是要把它弄清楚做明白。有的同学在初中数学的学习中不会只是因为不熟而已,那么怎么办?就是多练习和多思考,数学的学习没有什么捷径和技巧,熟能生巧才是最好的学习技巧。另外,初中数学想要打高分,在做题方面一定要仔细和认真,不能马虎。
数学数据的平均数中位数与众数知识点
1.数据13,10,12,8,7的平均数是10.
2.数据3,4,2,4,4的众数是4.
3.数据1,2,3,4,5的中位数是3.
七年级上册数学知识点总结 篇21
整式与分式
整式:
①数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。
②一个单项式中,所有字母的指数和叫做这个单项式的次数。
③一个多项式中,次数最高的项的次数叫做这个多项式的次数。
整式运算:加减运算时,如果遇到括号先去括号,再合并同类项。
幂的运算:AM+AN=A(M+N)
(AM)N=AMN
(A/B)N=AN/BN 除法一样。
整式的乘法:
①单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。
②单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
③多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加。
公式两条:平方差公式/完全平方公式
整式的除法:
①单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。
②多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。
分解因式:把一个多项式化成几个整式的积的形式,这种变化叫做把这个多项式分解因式。
方法:提公因式法、运用公式法、分组分解法、十字相乘法。
分式:
①整式A除以整式B,如果除式B中含有分母,那么这个就是分式,对于任何一个分式,分母不为0。
②分式的分子与分母同乘以或除以同一个不等于0的整式,分式的值不变。
分式的运算:
乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
除法:除以一个分式等于乘以这个分式的倒数。
加减法:
①同分母的分式相加减,分母不变,把分子相加减。
②异分母的分式先通分,化为同分母的分式,再加减。
分式方程:
①分母中含有未知数的方程叫分式方程。
②使方程的分母为0的解称为原方程的增根。
七年级上册数学知识点总结 篇22
1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。
2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;
单项式中所有字母指数的和,叫单项式的次数
3.多项式:几个单项式的和叫多项式
4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;
5.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项
6.合并同类项法则:系数相加,字母与字母的指数不变
7.去(添)括号法则:
去(添)括号时,若括号前边是+号,括号里的各项都不变号;若括号前边是-号,括号里的各项都要变号
8.整式的加减:一找:(划线);二+(务必用+号开始合并)三合:(合并)
9.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)
七年级上册数学知识点总结 篇23
我们东流湖学校这一届七年级,拥有教学班4个,两个重点班,两个平行班,任课教师20多人,学生人数达169人。这一届七年级班额平均达42-43人每班,绝大部分学生都是第一次离开父母开始独立的生活、学习,对新的生活、学习有种种不适应,全年级教师,特别是班主任教师教育、教学的困难是相当大的,任务是相当繁重的,也给年级组的管理工作提出了新的挑战。但是,经过年级组全体教职员工富于创新的扎实工作,七年级组的各项工作都做得非常突出,年级组全体教职员工都在用自己扎实的工作、出色的表现实现着我们“家长放心、学生满意、社会赞誉”的办学目标。
现就本学期工作从以下几个方面进行总结:
一、以人为本、团结协作,构建和谐年级组
年级组是老师们工作学习的场所,更是老师们互相沟通理解的场所,在年级组日常管理中,我们坚持“以人为本,构建和谐年级组”的管理理念,充分弘扬我校教师敬业爱岗,无私奉献的优秀传统,互相理解,取长补短,人际关系谐调,老师们相互关心,相互信任、相互支持。
二、制度化管理与人性化管理相得益彰
一开学,年级组就通过充分的学习,将《班主任管理工作规范》做为班主任管理班级的行动指南,给学生学习了《学生日常行为管理规范》,让学生的学习生活都有章可循,制定了《早晚自习下班辅导课程安排》,学期中,配合学校初步制定的绩效工资考核办法的进行了讨论。年级组各方面的工作都实现了制度化管理,体现了管理的科学化、民主化,提高了管理工作的效率与效果。在管理制度化的同时,我们充分认识到“人”在我们管理工作中的核心地位,我们的各项制度无论是在制定的时候,还是在落实的过程中,以及最后的评价阶段都充分考虑到“人”教职员工和学生的感受与承受力,各项制度都重在“导”,寓“管”于“导”,全体教职员工都把学校及年级组的要求自觉内化为自己的工作指南,每个教职员工都把年级组的工作当作自己的事情,充分调动了广大教职员工的工作主动性与创造性,使年级组的工作五彩缤纷、各显特色。
三、努力构建快乐学习、健康成长的良好环境
1、开展形式多样的主题班会,培养学生的行为习惯,加强学生的思想道德教育,让学生感受到集体生活的快乐与温馨。
2、开展丰富多彩的课余活动,为学生提供展示才华的良好平台,为不同层次的同学创造一个体验成功、展现个性的机会。
3、对学生在学习、生活中遇到的困难进行及时、细心的指导、帮助,让学生充分感受到学校、老师的关爱。
四、为学生的终生发展服务,注重良好行为习惯和优秀品行的培养
开学之初,就对全体学生进行“文明、健康、诚信”“自信、勤奋、勇于超越”的思想教育,并切实落实在日常行为管理规范之中,从入学开始就逐步帮助学生树立“做一个文明人”的信念。在平时的教育教学工作中教育学生首先要学会做一个人格健全的人,时刻以做“一个文明中学生”的要求严格要求自己,规范自己的一言一行,养成良好的行为习惯和学习习惯。
总之,本学期来,七年级全体教职员工表现出了可敬的奉献精神和可贵的团队意识,在他们努力工作与无私奉献下,年级组管理正常,教学有序,学生快乐学习、健康成长。这一切也是学校正确的领导和全体教职员工努力工作的必然结果。
七年级上册数学知识点总结 篇24
一学期紧张的工作就要结束了,本学期,我担任两个班的数学教学任务,经过一学期的努力,完成了本学期的教学任务,现将本学期的工作总结如下:
一、业务学习
为了提高自己的专业素养和业务水平,加强学习,提高思想认识,树立新的理念。坚持每天读书半小时,每周写两篇读书笔记。坚持每周的政治学习和业务学习,紧紧围绕学习新课程,构建新课程,尝试新教法的目标,不断更新教学观念。注重把学习新课程标准与构建新理念有机的结合起来。并将理论联系到实际教学工作中,更新观念,丰富知识,提高能力。另外,自觉学习教师职业道德规范和教师十不准等,严格按照教师职业道德规范和教师十不准要求自己。认真完成学校布置的各项任务。
二、教学方面
教学工作是学校各项工作的中心,一学期来,在坚持抓好新课程理念学习和应用的同时,我积极探索教育教学规律,充分运用学校现有的教育教学资源,改革课堂教学,加大新型教学方法的使用,取得了一些效果,具体表现在:
1、做好课前准备和课后反思工作。
每天认真阅读、挖掘、活用教材,研究教材的重点、难点、关键,研读新课标,明白这节课的新要求,思考如何将新理念融入课堂教学中。认真书写教案,利用网络资源,参考别人的教学教法教学设计,根据我校学生的具体情况制定课时计划。每一课都做到“有备而来”,每堂课都在课前做好充分的准备。有些课用多媒体上比较直观,如:第六章平面直角坐标系中用坐标表示平移,充分调动学生的学习积极性。课后及时对该课作出总结,写好教学后记,并进行阶段总结。
2、把好上课关,提高课堂教学效率、质量。
新课标的数学课通常采用“创设情境——建立模型——解释、应用与拓展”的模式展开,所有新知识的学习都以相关问题情境的研究作为开始,它们使学生了解与学习这些知识的有效切入点。所以在课堂上创设能吸引学生注意的情境。这样还能使学生了解到数学知识与实际生活和生产的关系,学以致用。另外新课标倡导“自主、合作、探究”的学习方式,这种学习方式不是彻底放手,而是要求学生有目的的针对问题先自主探究,然后再与同学合作交流,最后探究出解决问题的方法。对于学生无法解决的问题,教师就可以设计一系列的问题串,逐步引导学生,一步步找到解决问题的方法。这就要求教师不但要选择适当的教学情境,在课堂上为学生提供动手实践、自主探究、合作交流的机会,让他们讨论、思考、表达。而且还要适时引导,不能放任自流。
增强上课技能,提高教学质量,使讲解清晰化,条理化,准确化,情感化,生动化,做到线索清晰,层次分明,言简意赅,深入浅出。在课堂上特别注意调动学生的积极性,加强师生交流,充分体现学生的主体作用,让学生学得容易,学得轻松,学得愉快;注意精讲精练,在课堂上老师讲得尽量少,学生动口动手动脑尽量多;同时在每一堂课上都充分考虑每一个层次的学生学习需求和学习能力,让各个层次的学生都得到提高。
3、要进行一定数量的练习。
相当数量的练习是必要的,练习时要有目的,抓基础与重难点,渗透数学思维,在练习时注重学生数学思维的形成与锻炼,形成一定的思维能力并打好基础。
4、做好培优辅差工作。
根据两个班学生学习数学的情况,把他们分成优生、中等生、学困生。利用每天中午二十分钟,第八节课的时间辅导学困生,有问题要问的学生自由来办公室问,或让作业不过关的同学有老师指点、改正。除了老师辅导外,还要求学生成立“数学学习互助小组",由一位优生带两到三个学困生,辅导他们完成作业。对于优生,给他们布置书中拓广探索的习题做,或布置课外学习,有问题可以随时到办公室问教师。
5、在作业批改上,认真及时,力求做到全批全改,重在订正,及时了解学生的学习情况,以便在辅导中做到有的放矢。
三、教科研方面
由于七年级学生刚升入初中不久,有很多不良习惯,特别是在学习上没有一个好的学习习惯,每天只是为了应付教师布置的作业,为此,本学期我制定了《如何培养学生养成良好的学习习惯》这一课题,目的是针对七年级学生的实际状况,有目的的培养学生形成一个好的学习习惯。
四、存在问题
1 、教材挖掘不深入。
2 、学生的知识结构还不是很完整,知识系统还存在很多真空的部分。
3、课堂教学设计、研究、效果方面还要考虑
4、多媒体技术在课堂教学中的使用还有待提高;
针对以上存在的问题,在今后的教学中,要加强教学管理,改进不足,争取更好的完成教学任务。
七年级上册数学知识点总结 篇25
转眼间半年时间已经过去,作为一名从教多年的老师,在教学工作中,也遇到了许多问题,本期自己所教班学生成绩不是很理想,我对我初一的数学教学做了如下的反思:
一、对教学目标的反思
教学目标是教学设计中的首要环节,是一节课的纲领,对纲领认识不清或制定错误必定注定打败仗,七年级上期数学教学反思。对于我来说我自认为有以下几点不足:
1 、对教学目标设计思想上不足够重视,目标设计流于形式。
2 、教学目标设计关注的仍然只是认知目标,对“情感目标”、“能力目标”有所忽视,重视的是知识的灌输、技巧的传递,严重忽视了教材的育人功能。
3 、教学目标的设计含混,不够全面、开放。
教学目标的制定要符合学生的认知程序与认知水平。制定的教学目标过高或过低都不利于学生发展,要让学生跳一跳摘到桃子。“这么简单的题都做不出来”、“这道题都讲过几遍了还不会做”,碰到这样情况,我们不应埋怨学生,而要深刻反思出现这样状况到底是什么原因,是学生不接受这样的讲解方式,还是认识上有差异;是学生不感兴趣,还是老师引导不到位等等;作为老师千万不能埋怨责怪学生,不反思自己,只会适得其反,以致把简单的问题都变成学生的难点,因此教学设计要能激发学生学习数学的热情与兴趣,要教给学生需要的数学。以后的教学中辅导后进生应向其他老师学习。
二、对教学计划的反思
在教学设计中,对教学内容的处理安排还存在以下几点缺乏:
(1)缺乏对教材内容转译;抓住知识本质特征,设计一些诱发性的练习能诱导学生积激学生的好奇心,教学反思《七年级上期数学教学反思》。
(2)问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在“观察、实践、归纳、猜想和证明”的探究过程中,激发起他们对新知识的渴望。
学生在学习中遇到的困惑,往往是一节课的难点,将解决学生困惑的方法在教学后记中记录下来,就会不断丰富自己的教学经验。
认清了问题,要解决问题并不是一朝一夕,一蹴而就的,我坚信只要我继续努力,更新观念,深刻反思自己的教学行为,教学规范,就一定能够有所发展,有所进步!
(2)缺乏对已学知识的分析、综合、对比、归纳和整体系统化;
(3)缺乏对教学内容的教育功能的挖掘和利用;
(4)缺乏对自我上课的经验总结。
三、征求学生意见
潜心于提高自己教学水平的老师,往往向学生征询对自己教学的反馈意见,这是老师对其教学进行反思的一个重要的渠道。
若在课堂上设计了良好的教学情境,则整节课学生的学习积极性始终很高。课后我总结出以下两点体会:(1)抓住知识本质特征,设计一些诱发性的练习能诱导学生积极思维,刺激学生的好奇心。
(2)问题的设计不应停留在简单的变式和肤浅的问答形式上,而应设计一些既能让学生动手触摸、又能动脑思考的问题,这样可使学生在“观察、实践、归纳、猜想和证明”的探究过程中,激发起他们对新知识的渴望。
学生在学习中遇到的困惑,往往是一节课的难点,将解决学生困惑的方法在教学后记中记录下来,就会不断丰富自己的教学经验。
四、对教学误区的反思
以前我以为老师讲得清,学生就听得懂。现在才知道如果老师讲课只顾自己津津有味,不顾来自于学生的反馈,老师与学生的的思维不能同步,学生只是被动地接受,毫无思考理解的余地,这样不是听不懂,便是囫囵吞枣。在课堂的业余时间段内让学生通过主动探索后发现知识,领悟所学。同时要及时反馈学生,加强效果回授,对未听清之处给学生以二次补授之机会,及时扫清障碍,将学习上的隐患消灭在萌芽状态。
我常常埋怨学生,“这么简单的题都做不出来”!孰不知,老师与学生的知识水平与接受能力往往存在很大反差,就学生而言,接受新知识需要一个过程,绝不能用老师的水平衡量学生的能力。因此,在教学时,必须全面理解学生的基础与能力,低起点、多层次、高要求地施教,让学生一步一个脚印,扎扎实实学好基础知识,在学知识中提高能力。
虽然我已经认清了问题,但是要解决问题不是一朝一夕,一蹴而就的,我坚信只要我继续努力,更新观念,深刻反思自己的教学行为,教学规范,就一定能够有所发展,有所进步!
七年级上册数学知识点总结 篇26
1、单项式对数字和若干个字母施行有限次乘法运算,所得的代数式叫做单项式.单独一个数或一个字母也是单项式.
2、系数单项式中的数字因数叫做这个单项式的系数.
3、降幂排列把一个多项式,按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列.
4、升幂排列把一个多项式,按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.
5、整式单项式和多项式统称整式。
6、同类项所含字母相同,并且相同字母的次数也相同的项,叫做同类项.常数项都是同类项.
7、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.
8、去括号法则括号前是"+"号,把括号和它前面的"+"号去掉,括号里各项都不变符号;括号前是"-"号,把括号和它前面的"-"号去掉,括号里各项都改变符号.例:a+(b-2c)-(e-2d)=a+b-2c-e+2d14、添括号法则添括号后,括号前面是"+"号,括到括号里的各项都不变符号;添括号后,括号前面是"-"号,括到括号里的各项都改变符号.例:m+2x-y+z-5=m+(2x-y)-(-z+5)
9、整式的加减整式加减的一般步骤:
1.如果遇到括号,按去括号法则先去括号;
2.合并同类项.
10、代数式的恒等变形一个代数式用另一个与它恒等的表达式去代换,叫做恒等变形.
七年级上册数学知识点总结 篇27
1.单项式的乘法法则:
单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.
单项式与多项式的乘法法则:
单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.
多项式与多项式的乘法法则:
多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.
单项式的除法法则:
单项式相除,把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.
多项式除以单项式的法则:
多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.
2、乘法公式:
①平方差公式:(a+b)(a-b)=a2-b2
文字语言叙述:两个数的和与这两个数的差相乘,等于这两个数的平方差.
②完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
文字语言叙述:两个数的和(或差)的平方等于这两个数的平方和加上(或减去)这两个数的积的2倍.
3、因式分解:
因式分解的定义.
把一个多项式化成几个整式的乘积的形式,这种变形叫做把这个多项式因式分解.
七年级上册数学知识点总结 篇28
角的性质:
(1)角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关。
(2)角的大小可以度量,可以比较
(3)角可以参与运算。
时针问题:
时针每小时300,每分钟0.50;分针每分钟60;时针与分针每分钟差5.50。
时针与分针夹角=分×5.50—时×300(分针靠近12点)
时针与分针夹角=时×300—分×5.50(时针靠近12点)
若结果大于1800,另一角度用3600减这个角度。
经过多少时间重合、垂直、在一条线上,用求出的重合、垂直、在一条线上的时间减去现在的时间。追及问题还可用追及度数/5.5。
角的平分线
从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
多边形
由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。
从一个n边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n—2)个三角形。n边形内角和等于(n—2)×1800,正多边形(每条边都相等,每个内角都相等的多边形)的每个内角都等于(n—2)×1800 / n
过n边形一个顶点有(n—3)条对角线,n边形共(n—3)×n / 2条对角线。
圆、弧、扇形
圆:平面上一条线段绕着固定的一个端点旋转一周,另一个端点形成的图形叫做圆。固定的端点称为圆心
弧:圆上A、B两点之间的部分叫做圆弧,简称弧。
扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形。
圆心角:顶点在圆心的角叫圆心角。
七年级上册数学知识点总结 篇29
1.字母表示数
1)字母表示运算律
2)字母表示计算公式
字母可以表示任何数
2.代数式
1)概念:像4+3(x-1),x+x+(x+1),a+b,ab,2(+n),s/t 等式子都是代数式,单独一个数或一个字母也是代数式,如-5,a,b等.
2)书写要求:
①字母与字母相乘时,乘号通常简写作“ ”或省略不写;数字与字母相乘时,数字在前;带分数与字母相乘时,应先把带分数化成假分数后再与字母相乘;数字与数字相乘仍用“×”
②除法一般写成分数形式
③ 如果代数式是积或商的形式,单位直接写在后面;如果是和或差的形式,必须先把代数式用括号括起来再写单位。
3.整式
1)单项式:表示数字和字母的积,单独的一个数或一个字母也是单项式
① 系数:单项式中的数字因数(包括其前面的符号)
② 次数:单项式中,所有字母的指数的和;单独的数字是0次单项式
注意:
(1)单项式中数与字母之间都是乘积关系,凡字母出现在分母中的式子一定不是单项式,如1/x不是单项式;
(2)单项式中不含加减运算;
(3)π是常数,在单项式中相当于数字因数;
(4)定义中的“数”可以是小数,也可以是分数、整数
2)多项式:几个单项式的和;在多项式中,每个单项式叫做多项式的项,不含字母的项叫常数项;一个多项式含有几项,就叫几项式;
次数: 多项式里,次数最高项的次数,是多项式的次数;
注意:
(1)确定多项式的项时,不要忽略它的符号;
(2)关于某个字母的n次项式,要求是合并同类项后的最简多项式
3) 整式:单项式和多项式统称为整式
4)同类项:
① 概念:所含字母相同,并且相同字母的指数也相同的项;与它们的系数大小无关,与字母顺序无关;几个常数也是同类项.
②合并同类项法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变
4.整式的加减:
1)整式加减是求几个整式的和或差的运算,其实质是去括号,合并同类项
2)法则:几个整式相加减,用括号把每一个整式括起来,再用加减号连接,然后去括号,合并同类项
3)化简求值:一是相加减化简,二是用具体数值代替整式中的字母,三是按式子的运算关系计算,计算其结果
5.探索与表达规律:图形中的规律、数字中的规律、算式中的规律
七年级上册数学知识点总结 篇30
我们备课组共有四名教师,我们互相信任、互相帮助、互相学习、互相探讨、互相研究、互相提高。一学期以来,我们七年级数学备课组在教研组的带动下,全组教师坚持教育、教学理论的学习,积极参加各教研活动,完善和改进教学方法和手段,为提高我校的数学教学质量出了一份力。
一、抓好教学常规的学习与实施,提高课堂教学效率。
1、加强备课组的管理,狠抓组风建设。教务处世哲学经常深入备课组,了解、检查本组的教学工作情况,每月对各教师的备课、听课情况检查一次,以便及时发现问题、解决问题。特别抓好“备课”、“上课”、“课后辅导”“培优转差”等主要环节,积极有效地开展集体备课,认真做好教材的分析、研究和教学研讨活动,用好教材,发掘教材资源,紧紧围绕数学认知规律,结合有关的数学思想循环上升,鼓励教师充分发挥个人的教学特长,有效地提高教学效率。
2、有效备课、听课、评课,授课。每周活动一次,活动做到定时,定一个主讲人,定内容,定地点。四个统一(进度,目标,重点难点,作业测验)。做到“取长补短,共同提高”原则下,要求课时齐全,内容详实,格式规范。按学校要求,每次集体备课,做好记录,以存资料,以备检查。提倡相互听课,相互学习,相互帮助。达到以老带新,以能带新,共同提高的目的。
二、坚持理论学习,认真撰写心得体会。
为加强修养,提高素质,我们认真学习教研教改知识,每月一个主题,并且积极撰写学习心得,了解教研教改信息,善学才能善研,善研才能善教,已成为全组教师的共识,不光如此,我们还注意用教学理论指导教学实践,加强课堂改革。
三、在课余时间经常交流教学经验、体会
由于办公室的特点,我们数学备课组的老师经常坐在一起,除了每次的备课组活动,平时我们在教学中有什么好的方法、点子,有什么疑难的问题都会及时地在办公室进行交流。其实备课组的活动不一定都是要统一一个时间坐在一起讨论,任何时间只要大家有想法都可以进行交流。并在教学中我们坚持一课一反思,同事之间共同探讨,力求将每一堂课让学生都学有所获.
我组全体教师在新的一年里,决心更加团结协作,自加压力,树立主人翁精神,为提高教学质量而发奋努力。
初一数学备课组共有9名教师,我们互相团结、互相帮助、互相学习、互相提高。一学期以来,我们备课组在学校领导的带领下,全组教师坚持教育、教学理论的学习,积极参加各教研活动,完善和改进教学方法和手段,一切为了提高教学效率而努力工作着。
一学期来,我们备课组常规工作有:制定计划、统一教学进度、把握教学重点、解答教学难点和习题难点、讨论复习要点、组织测试、分析日常教学存在问题等等。
本学期主要围绕怎样提高效率这一中心开展活动,让学生真正吃透教材,其中要把握好课堂上学习效率。我们也就紧紧围绕提高课堂效率这一目标进行教学。为了达到这一目的,我们全组人员齐心协力在课堂内外下功夫,每节课都认真地准备,争取达到最佳的效果。下面我简单介绍一下我们所做的工作:
第一、认真备课,发挥集体优势。
作为一个称职的教师,应要求对教材有高度的理解和把握能力。而且作为一个备课组集体,应该是集体智慧的体现,所以在每次集体备课前,针对重点内容先要求每位教师自己认真备课,就像我们要求学生课前预习一样,先熟悉教材,掌握重点,发现问题。在集体备课时,由每位教师讲自己对教材的理解与欣赏,讲自己的困惑与疑问,然后针对问题,大家讨论,最后得出一个科学的结论。这样备课,体现了群策群力,所以我们的每一节课都是集体智慧的结晶。除了备每一节课之外,我们备课组内的教师经常在一起探讨教学中出现的问题,有学科知识方面比如那一章是初中的重点等,也有教学方法上的,还有学生思想、课堂纪律方面等等。我们都是取别人的优点补自己的不足,不断地服务于我们的教学。
第二、多开课,多听课,多评课,提高教师课堂教学效率。
古人云:“它山之石,可以攻玉”。凭借自身的努力,教师能够有较大的.进步,但是在相互的交流与学习中,我们更能得到宝贵的经验,取得更大进步。为此,我们备课组的全体成员非常珍惜每一次教研活动。本学期,我们积极参加了校和市教研活动。只要有开课活动,我们总是积极参与,认真听课,踊跃评课。
第三、勇挑重担,互帮互助
我们组就像一个大家庭一样,每次的复习大家都主动分担部分复习材料的准备,在教学中出现的问题大家也都及时提出在组内一起讨论。从中看出我们组内的老师互相团结、互相信任、互相帮助,一切从学校的利益出发。
第四、本学期,我们组的教师认真开好公开课,每一次都是精心准备,其他成员认真聆听,并提出了很多宝贵的意见和建议。本学期邵怡完成了市级公开课,张君翔,孙剑,朱琴芳完成了晒课。
我们组非常看重集体备课,不仅可以合理把握课标,更加突显了我们备课组集体的智慧。不断地深化解决策略,为我们上课教师提供了很好的材料,最终为取得优良的教学质量奠定了基础。
总之,我们组在一学期中,精诚团结,在教育教学及学校其他工作中都取得了一定的成绩。今后,我们将继续努力,做好自己的本职工作,争取在各方面取得更大成绩。